Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 17(8): 822-832, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719531

RESUMO

There is a need for methods that can image chromosomes with genome-wide coverage, as well as greater genomic and optical resolution. We introduce OligoFISSEQ, a suite of three methods that leverage fluorescence in situ sequencing (FISSEQ) of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how four rounds of sequencing are sufficient to produce 3D maps of 36 genomic targets across six chromosomes in hundreds to thousands of cells, implying a potential to image thousands of targets in only five to eight rounds of sequencing. We also use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromosome through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunocytochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of large swaths of, if not entire, human genomes.


Assuntos
Coloração Cromossômica/métodos , Cromossomos/química , Cromossomos/genética , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos , Mapeamento Físico do Cromossomo
2.
J Cell Sci ; 133(14)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576667

RESUMO

Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Cromossomos Artificiais Humanos , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Segregação de Cromossomos/genética , Cromossomos Artificiais Humanos/genética , Cromossomos Artificiais Humanos/metabolismo , Epigênese Genética , Heterocromatina , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Cinetocoros/metabolismo
3.
PLoS Genet ; 16(3): e1008673, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203508

RESUMO

Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal a hierarchical organization of the PCH domains into distinct "territories." Strikingly, H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D interactions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our findings have important implications for how PCH architecture influences the function and evolution of both repetitive heterochromatin and the gene-rich euchromatin.


Assuntos
Centrossomo/metabolismo , Eucromatina/genética , Heterocromatina/metabolismo , Animais , Estruturas Cromossômicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eucromatina/metabolismo , Genoma/genética , Heterocromatina/genética , Heterocromatina/ultraestrutura , Histonas/genética , Sequências Repetitivas de Ácido Nucleico/genética
4.
PLoS Biol ; 17(5): e3000241, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31086362

RESUMO

Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.


Assuntos
Centrômero/genética , Drosophila/genética , Retroelementos/genética , Animais , Proteína Centromérica A/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Drosophila/embriologia , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Genoma de Inseto , Sequências Repetidas Terminais/genética
5.
PLoS Genet ; 14(12): e1007872, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586358

RESUMO

Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method-integrative modeling of genomic regions (IMGR)-to increase the genomic resolution of our traces to 10 kb.


Assuntos
Passeio de Cromossomo/métodos , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/ultraestrutura , Modelos Genéticos , Células Cultivadas , Coloração Cromossômica/métodos , Estruturas Cromossômicas/química , Estruturas Cromossômicas/genética , Estruturas Cromossômicas/ultraestrutura , Cromossomos Humanos Par 19/química , Feminino , Corantes Fluorescentes , Humanos , Imageamento Tridimensional , Hibridização in Situ Fluorescente/métodos , Masculino , Sondas de Oligonucleotídeos , Linhagem
6.
Dev Cell ; 37(5): 413-27, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27270040

RESUMO

Centromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assembly factor M18BP1 and acetyltransferase KAT7/HBO1/MYST2. Knocking out KAT7 in HeLa cells reduced centromeric CENP-A assembly. Mitotic chromosome misalignment and micronuclei formation increased in the knockout cells and were enhanced when the histone H3-K9 trimethylase Suv39h1 was overproduced. Tethering KAT7 to an ectopic alphoid DNA integration site removed heterochromatic H3K9me3 modification and was sufficient to stimulate new CENP-A or histone H3.3 assembly. Thus, KAT7-containing acetyltransferases associating with the Mis18 complex provides competence for histone turnover/exchange activity on alphoid DNA and prevents Suv39h1-mediated heterochromatin invasion into centromeres.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Histona Acetiltransferases/metabolismo , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteína Centromérica A , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Técnicas de Inativação de Genes , Células HeLa , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Transativadores/metabolismo
7.
Mol Biol Cell ; 27(1): 177-96, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26564795

RESUMO

Centromeres are characterized by the centromere-specific H3 variant CENP-A, which is embedded in chromatin with a pattern characteristic of active transcription that is required for centromere identity. It is unclear how centromeres remain transcriptionally active despite being flanked by repressive pericentric heterochromatin. To further understand centrochromatin's response to repressive signals, we nucleated a Polycomb-like chromatin state within the centromere of a human artificial chromosome (HAC) by tethering the methyltransferase EZH2. This led to deposition of the H3K27me3 mark and PRC1 repressor binding. Surprisingly, this state did not abolish HAC centromere function or transcription, and this apparent resistance was not observed on a noncentromeric locus, where transcription was silenced. Directly tethering the reader/repressor PRC1 bypassed this resistance, inactivating the centromere. We observed analogous responses when tethering the heterochromatin Editor Suv39h1-methyltransferase domain (centromere resistance) or reader HP1α (centromere inactivation), respectively. Our results reveal that the HAC centromere can resist repressive pathways driven by H3K9me3/H3K27me3 and may help to explain how centromeres are able to resist inactivation by flanking heterochromatin.


Assuntos
Centrômero/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centrômero/genética , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Cromossomos Artificiais Humanos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Epigenômica/métodos , Células HeLa , Heterocromatina/metabolismo , Histonas/genética , Humanos , Metiltransferases/genética , Complexo Repressor Polycomb 2
8.
J Cell Sci ; 128(24): 4572-87, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527398

RESUMO

Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoid(tetO)). We also obtained cell lines bearing the alphoid(tetO) array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos
9.
Dev Cell ; 24(6): 635-48, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23499358

RESUMO

Centromeres are specified by sequence-independent epigenetic mechanisms in most organisms. Rarely, centromere repositioning results in neocentromere formation at ectopic sites. However, the mechanisms governing how and where neocentromeres form are unknown. Here, we established a chromosome-engineering system in chicken DT40 cells that allowed us to efficiently isolate neocentromere-containing chromosomes. Neocentromeres appear to be structurally and functionally equivalent to native centromeres. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis with 18 neocentromeres revealed that the centromere-specific histone H3 variant CENP-A occupies an ∼40 kb region at each neocentromere, which has no preference for specific DNA sequence motifs. Furthermore, we found that neocentromeres were not associated with histone modifications H3K9me3, H3K4me2, and H3K36me3 or with early replication timing. Importantly, low but significant levels of CENP-A are detected around endogenous centromeres, which are capable of seeding neocentromere assembly if the centromere core is removed. In summary, our experimental system provides valuable insights for understanding how neocentromeres form.


Assuntos
Centrômero/genética , Galinhas/genética , Cromossomos/genética , Animais , Autoantígenos/genética , Sequência de Bases , Linhagem Celular , Centrômero/metabolismo , Proteína Centromérica A , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Replicação do DNA , Epigênese Genética , Engenharia Genética , Análise de Sequência de DNA , Transcrição Gênica
10.
Chromosome Res ; 20(5): 505-19, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22825423

RESUMO

The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Artificiais Humanos/metabolismo , Proteína Centromérica A , Proteína B de Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , DNA Satélite/metabolismo , Vetores Genéticos , Heterocromatina/metabolismo , Humanos , Mitose , Nucleossomos/metabolismo , Transcrição Gênica
11.
Dev Cell ; 22(1): 52-63, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22169070

RESUMO

Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.


Assuntos
Autoantígenos/metabolismo , Proteína Quinase CDC2/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Epigenômica , Fase G1/fisiologia , Western Blotting , Ciclo Celular , Divisão Celular , Proteína Centromérica A , Cromatina/genética , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Citometria de Fluxo , Imunofluorescência , Células HeLa , Humanos , Mitose/fisiologia , Fosforilação
12.
EMBO J ; 30(2): 328-40, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21157429

RESUMO

Kinetochores assemble on distinct 'centrochromatin' containing the histone H3 variant CENP-A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4-K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine-specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α-satellite DNA and to no longer efficiently recruit HJURP, the CENP-A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP-A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α-satellite transcription, maintenance of CENP-A levels and kinetochore stability.


Assuntos
Autoantígenos/metabolismo , Centrômero/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Artificiais Humanos/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Histonas/metabolismo , Centrômero/metabolismo , Proteína Centromérica A , Cromatina/genética , Imunoprecipitação da Cromatina , Primers do DNA/genética , Engenharia Genética/métodos , Humanos , Cinetocoros/metabolismo , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...